Author:
Kabir Mohammad Neamul,Wong Limsoon
Abstract
AbstractBackgroundCurrent protein family modeling methods like profile Hidden Markov Model (pHMM),k-mer based methods, and deep learning-based methods do not provide very accurate protein function prediction for proteins in the twilight zone, due to low sequence similarity to reference proteins with known functions.ResultsWe present a novel method EnsembleFam, aiming at better function prediction for proteins in the twilight zone. EnsembleFam extracts the core characteristics of a protein family using similarity and dissimilarity features calculated from sequence homology relations. EnsembleFam trains three separate Support Vector Machine (SVM) classifiers for each family using these features, and an ensemble prediction is made to classify novel proteins into these families. Extensive experiments are conducted using the Clusters of Orthologous Groups (COG) dataset and G Protein-Coupled Receptor (GPCR) dataset. EnsembleFam not only outperforms state-of-the-art methods on the overall dataset but also provides a much more accurate prediction for twilight zone proteins.ConclusionsEnsembleFam, a machine learning method to model protein families, can be used to better identify members with very low sequence homology. Using EnsembleFam protein functions can be predicted using just sequence information with better accuracy than state-of-the-art methods.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献