TruNeo: an integrated pipeline improves personalized true tumor neoantigen identification

Author:

Tang Yunxia,Wang Yu,Wang Jiaqian,Li Miao,Peng Linmin,Wei Guochao,Zhang Yixing,Li Jin,Gao Zhibo

Abstract

Abstract Background Neoantigen-based personal vaccines and adoptive T cell immunotherapy have shown high efficacy as a cancer treatment in clinical trials. Algorithms for the accurate prediction of neoantigens have played a pivotal role in such studies. Some existing bioinformatics methods, such as MHCflurry and NetMHCpan, identify neoantigens mainly through the prediction of peptide-MHC binding affinity. However, the predictive accuracy of immunogenicity of these methods has been shown to be low. Thus, a ranking algorithm to select highly immunogenic neoantigens of patients is needed urgently in research and clinical practice. Results We develop TruNeo, an integrated computational pipeline to identify and select highly immunogenic neoantigens based on multiple biological processes. The performance of TruNeo and other algorithms were compared based on data from published literature as well as raw data from a lung cancer patient. Recall rate of immunogenic ones among the top 10-ranked neoantigens were compared based on the published combined data set. Recall rate of TruNeo was 52.63%, which was 2.5 times higher than that predicted by MHCflurry (21.05%), and 2 times higher than NetMHCpan 4 (26.32%). Furthermore, the positive rate of top 10-ranked neoantigens for the lung cancer patient were compared, showing a 50% positive rate identified by TruNeo, which was 2.5 times higher than that predicted by MHCflurry (20%). Conclusions TruNeo, which considers multiple biological processes rather than peptide-MHC binding affinity prediction only, provides prioritization of candidate neoantigens with high immunogenicity for neoantigen-targeting personalized immunotherapies.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3