Five crucial prognostic-related autophagy genes stratified female breast cancer patients aged 40–60 years

Author:

Li Xiaolong,Zhang Hengchao,Liu Jingjing,Li Ping,Sun Yi

Abstract

Abstract Background Autophagy is closely related to the progression of breast cancer. The aim at this study is to establish a prognostic-related model comprised of hub autophagy genes (AGs) to assess patient prognosis. Simultaneously, the model can guide clinicians to make up individualized strategies and stratify patients aged 40–60 years based on risk level. Methods The hub AGs were identified with univariate COX regression and LASSO regression. The functions and alterations of these selected AGs were analyzed as well. Moreover, the multivariate COX regression and correlation analysis between hub AGs and clinicopathological parameters were done. Results Totally, 33 prognostic-related AGs were obtained from the univariate COX regression (P < 0.05). SERPINA1, HSPA8, HSPB8, MAP1LC3A, and DIRAS3 were identified to constitute the prognostic model by the LASSO regression. The survival curve of patients in the high-risk and low-risk groups was statistically significant (P < 0.05). The 3-year and 5-year ROC displayed that their AUC value reached 0.762 and 0.825, respectively. Stage and risk scores were independent risk factors relevant to prognosis. RB1CC1, RPS6KB1, and BIRC6 were identified as the most predominant mutant genes. It was found that AGs were mainly involved in regulating the endopeptidases synthesis and played important roles in the ErbB signal pathway. SERPIN1, risk score was closely related to the stage (P < 0.05); HSPA8, risk score were closely related to T stag (P < 0.05); HSPB8 was closely related to N stag (P < 0.05). Conclusions Our prognostic model had the relatively robust predictive ability on prognosis for patients aged 40–60 years. If the stage was added into the prognostic model, the predictive ability would be more powerful.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3