Ab initio protein structure prediction: the necessary presence of external force field as it is delivered by Hsp40 chaperone

Author:

Roterman Irena,Stapor Katarzyna,Konieczny Leszek

Abstract

Abstract Background The aqueous environment directs the protein folding process towards the generation of micelle-type structures, which results in the exposure of hydrophilic residues on the surface (polarity) and the concentration of hydrophobic residues in the center (hydrophobic core). Obtaining a structure without a hydrophobic core requires a different type of external force field than those generated by a water. The examples are membrane proteins, where the distribution of hydrophobicity is opposite to that of water-soluble proteins. Apart from these two extreme examples, the process of protein folding can be directed by chaperones, resulting in a structure devoid of a hydrophobic core. Results The current work presents such example: DnaJ Hsp40 in complex with alkaline phosphatase PhoA-U (PDB ID—6PSI)—the client molecule. The availability of WT form of the folding protein—alkaline phosphatase (PDB ID—1EW8) enables a comparative analysis of the structures: at the stage of interaction with the chaperone and the final, folded structure of this biologically active protein. The fuzzy oil drop model in its modified FOD-M version was used in this analysis, taking into account the influence of an external force field, in this case coming from a chaperone. Conclusions The FOD-M model identifies the external force field introduced by chaperon influencing the folding proces. The identified specific external force field can be applied in Ab Initio protein structure prediction as the environmental conditioning the folding proces.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3