Predicting DNA binding protein-drug interactions based on network similarity

Author:

Wang WeiORCID,Lv Hehe,Zhao Yuan

Abstract

Abstract Background The study of DNA binding protein (DBP)-drug interactions can open a breakthrough for the treatment of genetic diseases and cancers. Currently, network-based methods are widely used for protein-drug interaction prediction, and many hidden relationships can be found through network analysis. We proposed a DCA (drug-cluster association) model for predicting DBP-drug interactions. The clusters are some similarities in the drug-binding site trimmers with their physicochemical properties. First, DBPs-drug binding sites are extracted from scPDB database. Second, each binding site is represented as a trimer which is obtained by sliding the window in the binding sites. Third, the trimers are clustered based on the physicochemical properties. Fourth, we build the network by generating the interaction matrix for representing the DCA network. Fifth, three link prediction methods are detected in the network. Finally, the common neighbor (CN) method is selected to predict drug-cluster associations in the DBP-drug network model. Result This network shows that drugs tend to bind to positively charged sites and the binding process is more likely to occur inside the DBPs. The results of the link prediction indicate that the CN method has better prediction performance than the PA and JA methods. The DBP-drug network prediction model is generated by using the CN method which predicted more accurately drug-trimer interactions and DBP-drug interactions. Such as, we found that Erythromycin (ERY) can establish an interaction relationship with HTH-type transcriptional repressor, which is fitted well with silico DBP-drug prediction. Conclusion The drug and protein bindings are local events. The binding of the drug-DBPs binding site represents this local binding event, which helps to understand the mechanism of DBP-drug interactions.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3