scHaplotyper: haplotype construction and visualization for genetic diagnosis using single cell DNA sequencing data

Author:

Yan Zhiqiang,Zhu Xiaohui,Wang Yuqian,Nie Yanli,Guan Shuo,Kuo Ying,Chang Di,Li Rong,Qiao Jie,Yan Liying

Abstract

Abstract Background Haplotyping reveals chromosome blocks inherited from parents to in vitro fertilized (IVF) embryos in preimplantation genetic diagnosis (PGD), enabling the observation of the transmission of disease alleles between generations. However, the methods of haplotyping that are suitable for single cells are limited because a whole genome amplification (WGA) process is performed before sequencing or genotyping in PGD, and true haplotype profiles of embryos need to be constructed based on genotypes that can contain many WGA artifacts. Results Here, we offer scHaplotyper as a genetic diagnosis tool that reconstructs and visualizes the haplotype profiles of single cells based on the Hidden Markov Model (HMM). scHaplotyper can trace the origin of each haplotype block in the embryo, enabling the detection of carrier status of disease alleles in each embryo. We applied this method in PGD in two families affected with genetic disorders, and the result was the healthy live births of two children in the two families, demonstrating the clinical application of this method. Conclusion Next generation sequencing (NGS) of preimplantation embryos enable genetic screening for families with genetic disorders, avoiding the birth of affected babies. With the validation and successful clinical application, we showed that scHaplotyper is a convenient and accurate method to screen out embryos. More patients with genetic disorder will benefit from the genetic diagnosis of embryos. The source code of scHaplotyper is available at GitHub repository: https://github.com/yzqheart/scHaplotyper.

Funder

National Key Research and Development Program

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3