CysPresso: a classification model utilizing deep learning protein representations to predict recombinant expression of cysteine-dense peptides

Author:

Ouellet SébastienORCID,Ferguson LarissaORCID,Lau Angus Z.ORCID,Lim Tony K. Y.ORCID

Abstract

Abstract Background Cysteine-dense peptides (CDPs) are an attractive pharmaceutical scaffold that display extreme biochemical properties, low immunogenicity, and the ability to bind targets with high affinity and selectivity. While many CDPs have potential and confirmed therapeutic uses, synthesis of CDPs is a challenge. Recent advances have made the recombinant expression of CDPs a viable alternative to chemical synthesis. Moreover, identifying CDPs that can be expressed in mammalian cells is crucial in predicting their compatibility with gene therapy and mRNA therapy. Currently, we lack the ability to identify CDPs that will express recombinantly in mammalian cells without labour intensive experimentation. To address this, we developed CysPresso, a novel machine learning model that predicts recombinant expression of CDPs based on primary sequence. Results We tested various protein representations generated by deep learning algorithms (SeqVec, proteInfer, AlphaFold2) for their suitability in predicting CDP expression and found that AlphaFold2 representations possessed the best predictive features. We then optimized the model by concatenation of AlphaFold2 representations, time series transformation with random convolutional kernels, and dataset partitioning. Conclusion Our novel model, CysPresso, is the first to successfully predict recombinant CDP expression in mammalian cells and is particularly well suited for predicting recombinant expression of knottin peptides. When preprocessing the deep learning protein representation for supervised machine learning, we found that random convolutional kernel transformation preserves more pertinent information relevant for predicting expressibility than embedding averaging. Our study showcases the applicability of deep learning-based protein representations, such as those provided by AlphaFold2, in tasks beyond structure prediction.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3