Application of unsupervised deep learning algorithms for identification of specific clusters of chronic cough patients from EMR data

Author:

Shao Wei,Luo XiaoORCID,Zhang Zuoyi,Han Zhi,Chandrasekaran Vasu,Turzhitsky Vladimir,Bali Vishal,Roberts Anna R.,Metzger Megan,Baker Jarod,La Rosa Carmen,Weaver Jessica,Dexter Paul,Huang Kun

Abstract

Abstract Background Chronic cough affects approximately 10% of adults. The lack of ICD codes for chronic cough makes it challenging to apply supervised learning methods to predict the characteristics of chronic cough patients, thereby requiring the identification of chronic cough patients by other mechanisms. We developed a deep clustering algorithm with auto-encoder embedding (DCAE) to identify clusters of chronic cough patients based on data from a large cohort of 264,146 patients from the Electronic Medical Records (EMR) system. We constructed features using the diagnosis within the EMR, then built a clustering-oriented loss function directly on embedded features of the deep autoencoder to jointly perform feature refinement and cluster assignment. Lastly, we performed statistical analysis on the identified clusters to characterize the chronic cough patients compared to the non-chronic cough patients. Results The experimental results show that the DCAE model generated three chronic cough clusters and one non-chronic cough patient cluster. We found various diagnoses, medications, and lab tests highly associated with chronic cough patients by comparing the chronic cough cluster with the non-chronic cough cluster. Comparison of chronic cough clusters demonstrated that certain combinations of medications and diagnoses characterize some chronic cough clusters. Conclusions To the best of our knowledge, this study is the first to test the potential of unsupervised deep learning methods for chronic cough investigation, which also shows a great advantage over existing algorithms for patient data clustering.

Funder

Merck Sharp and Dohme

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3