Bioinformatics analysis reveals immune prognostic markers for overall survival of colorectal cancer patients: a novel machine learning survival predictive system

Author:

Zhang Zhiqiao,Huang Liwen,Li Jing,Wang Peng

Abstract

Abstract Objectives Immune microenvironment was closely related to the occurrence and progression of colorectal cancer (CRC). The objective of the current research was to develop and verify a Machine learning survival predictive system for CRC based on immune gene expression data and machine learning algorithms. Methods The current study performed differentially expressed analyses between normal tissues and tumor tissues. Univariate Cox regression was used to screen prognostic markers for CRC. Prognostic immune genes and transcription factors were used to construct an immune-related regulatory network. Three machine learning algorithms were used to create an Machine learning survival predictive system for CRC. Concordance indexes, calibration curves, and Brier scores were used to evaluate the performance of prognostic model. Results Twenty immune genes (BCL2L12, FKBP10, XKRX, WFS1, TESC, CCR7, SPACA3, LY6G6C, L1CAM, OSM, EXTL1, LY6D, FCRL5, MYEOV, FOXD1, REG3G, HAPLN1, MAOB, TNFSF11, and AMIGO3) were recognized as independent risk factors for CRC. A prognostic nomogram was developed based on the previous immune genes. Concordance indexes were 0.852, 0.778, and 0.818 for 1-, 3- and 5-year survival. This prognostic model could discriminate high risk patients with poor prognosis from low risk patients with favorable prognosis. Conclusions The current study identified twenty prognostic immune genes for CRC patients and constructed an immune-related regulatory network. Based on three machine learning algorithms, the current research provided three individual mortality predictive curves. The Machine learning survival predictive system was available at: https://zhangzhiqiao8.shinyapps.io/Artificial_Intelligence_Survival_Prediction_for_CRC_B1005_1/, which was valuable for individualized treatment decision before surgery.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3