Comparative Study of Single-stranded Oligonucleotides Secondary Structure Prediction Tools

Author:

Binet Thomas,Padiolleau-Lefèvre Séverine,Octave Stéphane,Avalle Bérangère,Maffucci Irene

Abstract

Abstract Background Single-stranded nucleic acids (ssNAs) have important biological roles and a high biotechnological potential linked to their ability to bind to numerous molecular targets. This depends on the different spatial conformations they can assume. The first level of ssNAs spatial organisation corresponds to their base pairs pattern, i.e. their secondary structure. Many computational tools have been developed to predict the ssNAs secondary structures, making the choice of the appropriate tool difficult, and an up-to-date guide on the limits and applicability of current secondary structure prediction tools is missing. Therefore, we performed a comparative study of the performances of 9 freely available tools (mfold, RNAfold, CentroidFold, CONTRAfold, MC-Fold, LinearFold, UFold, SPOT-RNA, and MXfold2) on a dataset of 538 ssNAs with known experimental secondary structure. Results The minimum free energy-based tools, namely mfold and RNAfold, and some tools based on artificial intelligence, namely CONTRAfold and MXfold2, provided the best results, with $$\sim 50\%$$ 50 % of exact predictions, whilst MC-fold seemed to be the worst performing tool, with only $$\sim 11\%$$ 11 % of exact predictions. In addition, UFold and SPOT-RNA are the only options for pseudoknots prediction. Including in the analysis of mfold and RNAfold results 5–10 suboptimal solutions further improved the performances of these tools. Nevertheless, we could observe issues in predicting particular motifs, such as multiple-ways junctions and mini-dumbbells, or the ssNAs whose structure has been determined in complex with a protein. In addition, our benchmark shows that some effort has to be paid for ssDNA secondary structure predictions. Conclusions In general, Mfold, RNAfold, and MXfold2 seem to currently be the best choice for the ssNAs secondary structure prediction, although they still show some limits linked to specific structural motifs. Nevertheless, actual trends suggest that artificial intelligence has a high potential to overcome these remaining issues, for example the recently developed UFold and SPOT-RNA have a high success rate in predicting pseudoknots.

Funder

Ministère de l’Enseignement Supérieur et de la Recherche

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3