Spark-based parallel calculation of 3D fourier shell correlation for macromolecule structure local resolution estimation

Author:

Lü Yongchun,Zeng Xiangrui,Tian Xinhui,Shi Xiao,Wang Hui,Zheng Xiaohui,Liu Xiaodong,Zhao Xiaofang,Gao Xin,Xu Min

Abstract

Abstract Background Resolution estimation is the main evaluation criteria for the reconstruction of macromolecular 3D structure in the field of cryoelectron microscopy (cryo-EM). At present, there are many methods to evaluate the 3D resolution for reconstructed macromolecular structures from Single Particle Analysis (SPA) in cryo-EM and subtomogram averaging (SA) in electron cryotomography (cryo-ET). As global methods, they measure the resolution of the structure as a whole, but they are inaccurate in detecting subtle local changes of reconstruction. In order to detect the subtle changes of reconstruction of SPA and SA, a few local resolution methods are proposed. The mainstream local resolution evaluation methods are based on local Fourier shell correlation (FSC), which is computationally intensive. However, the existing resolution evaluation methods are based on multi-threading implementation on a single computer with very poor scalability. Results This paper proposes a new fine-grained 3D array partition method by key-value format in Spark. Our method first converts 3D images to key-value data (K-V). Then the K-V data is used for 3D array partitioning and data exchange in parallel. So Spark-based distributed parallel computing framework can solve the above scalability problem. In this distributed computing framework, all 3D local FSC tasks are simultaneously calculated across multiple nodes in a computer cluster. Through the calculation of experimental data, 3D local resolution evaluation algorithm based on Spark fine-grained 3D array partition has a magnitude change in computing speed compared with the mainstream FSC algorithm under the condition that the accuracy remains unchanged, and has better fault tolerance and scalability. Conclusions In this paper, we proposed a K-V format based fine-grained 3D array partition method in Spark to parallel calculating 3D FSC for getting a 3D local resolution density map. 3D local resolution density map evaluates the three-dimensional density maps reconstructed from single particle analysis and subtomogram averaging. Our proposed method can significantly increase the speed of the 3D local resolution evaluation, which is important for the efficient detection of subtle variations among reconstructed macromolecular structures.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3