DGH-GO: dissecting the genetic heterogeneity of complex diseases using gene ontology

Author:

Asif Muhammad,Martiniano Hugo F. M. C.,Lamurias Andre,Kausar Samina,Couto Francisco M.

Abstract

Abstract Background Complex diseases such as neurodevelopmental disorders (NDDs) exhibit multiple etiologies. The multi-etiological nature of complex-diseases emerges from distinct but functionally similar group of genes. Different diseases sharing genes of such groups show related clinical outcomes that further restrict our understanding of disease mechanisms, thus, limiting the applications of personalized medicine approaches to complex genetic disorders. Results Here, we present an interactive and user-friendly application, called DGH-GO. DGH-GO allows biologists to dissect the genetic heterogeneity of complex diseases by stratifying the putative disease-causing genes into clusters that may contribute to distinct disease outcome development. It can also be used to study the shared etiology of complex-diseases. DGH-GO creates a semantic similarity matrix for the input genes by using Gene Ontology (GO). The resultant matrix can be visualized in 2D plots using different dimension reduction methods (T-SNE, Principal component analysis, umap and Principal coordinate analysis). In the next step, clusters of functionally similar genes are identified from genes functional similarities assessed through GO. This is achieved by employing four different clustering methods (K-means, Hierarchical, Fuzzy and PAM). The user may change the clustering parameters and explore their effect on stratification immediately. DGH-GO was applied to genes disrupted by rare genetic variants in Autism Spectrum Disorder (ASD) patients. The analysis confirmed the multi-etiological nature of ASD by identifying four clusters of genes that were enriched for distinct biological mechanisms and clinical outcome. In the second case study, the analysis of genes shared by different NDDs showed that genes causing multiple disorders tend to aggregate in similar clusters, indicating a possible shared etiology. Conclusion DGH-GO is a user-friendly application that allows biologists to study the multi-etiological nature of complex diseases by dissecting their genetic heterogeneity. In summary, functional similarities, dimension reduction and clustering methods, coupled with interactive visualization and control over analysis allows biologists to explore and analyze their datasets without requiring expert knowledge on these methods. The source code of proposed application is available at https://github.com/Muh-Asif/DGH-GO

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3