Abstract
Abstract
Background
Differential correlation networks are increasingly used to delineate changes in interactions among biomolecules. They characterize differences between omics networks under two different conditions, and can be used to delineate mechanisms of disease initiation and progression.
Results
We present a new R package, , that facilitates the estimation and visualization of differential correlation networks using multiple correlation measures and inference methods. The software is implemented in , and , and is available at https://github.com/sqyu/CorDiffViz. Visualization has been tested for the Chrome and Firefox web browsers. A demo is available at https://diffcornet.github.io/CorDiffViz/demo.html.
Conclusions
Our software offers considerable flexibility by allowing the user to interact with the visualization and choose from different estimation methods and visualizations. It also allows the user to easily toggle between correlation networks for samples under one condition and differential correlations between samples under two conditions. Moreover, the software facilitates integrative analysis of cross-correlation networks between two omics data sets.
Funder
National Science Foundation
National Institute of General Medical Sciences
National Institute on Aging
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献