Author:
Pan Shourun,Xia Leiming,Xu Lei,Li Zhen
Abstract
Abstract
Background
Drug–target affinity (DTA) prediction is a critical step in the field of drug discovery. In recent years, deep learning-based methods have emerged for DTA prediction. In order to solve the problem of fusion of substructure information of drug molecular graphs and utilize multi-scale information of protein, a self-supervised pre-training model based on substructure extraction and multi-scale features is proposed in this paper.
Results
For drug molecules, the model obtains substructure information through the method of probability matrix, and the contrastive learning method is implemented on the graph-level representation and subgraph-level representation to pre-train the graph encoder for downstream tasks. For targets, a BiLSTM method that integrates multi-scale features is used to capture long-distance relationships in the amino acid sequence. The experimental results showed that our model achieved better performance for DTA prediction.
Conclusions
The proposed model improves the performance of the DTA prediction, which provides a novel strategy based on substructure extraction and multi-scale features.
Funder
Shandong Key Science and Technology Innovation Project
Qingdao Key Technology Research and Industrialization Projects
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献