Abstract
Abstract
Background
In this research, an astute system has been developed by using machine learning and data mining approach to predict the risk level of cervical and ovarian cancer in association to stress.
Results
For functioning factors and subfactors, several machine learning models like Logistics Regression, Random Forest, AdaBoost, Naïve Bayes, Neural Network, kNN, CN2 rule Inducer, Decision Tree, Quadratic Classifier were compared with standard metrics e.g., F1, AUC, CA. For certainty info gain, gain ratio, gini index were revealed for both cervical and ovarian cancer. Attributes were ranked using different feature selection evaluators. Then the most significant analysis was made with the significant factors. Factors like children, age of first intercourse, age of husband, Pap test, age are the most significant factors of cervical cancer. On the other hand, genital area infection, pregnancy problems, use of drugs, abortion, and the number of children are important factors of ovarian cancer.
Conclusion
Resulting factors were merged, categorized, weighted according to their significance level. The categorized factors were indexed using ranker algorithm which provides them a weightage value. An algorithm has been formulated afterward which can be used to predict the risk level of cervical and ovarian cancer in relation to women's mental health. The research will have a great impact on the low incoming country like Bangladesh as most women in low incoming nations were unaware of it. As these two can be described as the most sensitive cancers to women, the development of the application from algorithm will also help to reduce women’s mental stress. More data and parameters will be added in future for research in this perspective.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference32 articles.
1. Seo J, Park M. Molecular crosstalk between cancer and neurodegenerative diseases. Cell Mol Life Sci. 2020;77(14):2659–80.
2. Cervical cancer. n.d. https://www.who.int/health-topics/cervical-cancer#tab=tab_1. Accessed 16 Feb 2021.
3. PTSD Associated with Higher Risk of Ovarian Cancer | Cancer Network. n.d. https://www.cancernetwork.com/view/ptsd-associated-higher-risk-ovarian-cancer. Accessed 16 Feb 2021.
4. Cancer. n.d. https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed 16 Feb 2021.
5. Endometrial, Ovarian, and Cervical Cancer. n.d. https://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/womens-health/gynecologic-malignancies/. Accessed 16 Feb 2021
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献