Robust pathway sampling in phenotype prediction. Application to triple negative breast cancer

Author:

Cernea Ana,Fernández-Martínez Juan Luis,deAndrés-Galiana Enrique J.,Fernández-Ovies Francisco Javier,Alvarez-Machancoses Oscar,Fernández-Muñiz Zulima,Saligan Leorey N.,Sonis Stephen T.

Abstract

Abstract Background Phenotype prediction problems are usually considered ill-posed, as the amount of samples is very limited with respect to the scrutinized genetic probes. This fact complicates the sampling of the defective genetic pathways due to the high number of possible discriminatory genetic networks involved. In this research, we outline three novel sampling algorithms utilized to identify, classify and characterize the defective pathways in phenotype prediction problems, such as the Fisher’s ratio sampler, the Holdout sampler and the Random sampler, and apply each one to the analysis of genetic pathways involved in tumor behavior and outcomes of triple negative breast cancers (TNBC). Altered biological pathways are identified using the most frequently sampled genes and are compared to those obtained via Bayesian Networks (BNs). Results Random, Fisher’s ratio and Holdout samplers were more accurate and robust than BNs, while providing comparable insights about disease genomics. Conclusions The three samplers tested are good alternatives to Bayesian Networks since they are less computationally demanding algorithms. Importantly, this analysis confirms the concept of “biological invariance” since the altered pathways should be independent of the sampling methodology and the classifier used for their inference. Nevertheless, still some modifications are needed in the Bayesian networks to be able to sample correctly the uncertainty space in phenotype prediction problems, since the probabilistic parameterization of the uncertainty space is not unique and the use of the optimum network might falsify the pathways analysis.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3