RGMQL: scalable and interoperable computing of heterogeneous omics big data and metadata in R/Bioconductor

Author:

Pallotta Simone,Cascianelli SilviaORCID,Masseroli Marco

Abstract

Abstract Background Heterogeneous omics data, increasingly collected through high-throughput technologies, can contain hidden answers to very important and still unsolved biomedical questions. Their integration and processing are crucial mostly for tertiary analysis of Next Generation Sequencing data, although suitable big data strategies still address mainly primary and secondary analysis. Hence, there is a pressing need for algorithms specifically designed to explore big omics datasets, capable of ensuring scalability and interoperability, possibly relying on high-performance computing infrastructures. Results We propose RGMQL, a R/Bioconductor package conceived to provide a set of specialized functions to extract, combine, process and compare omics datasets and their metadata from different and differently localized sources. RGMQL is built over the GenoMetric Query Language (GMQL) data management and computational engine, and can leverage its open curated repository as well as its cloud-based resources, with the possibility of outsourcing computational tasks to GMQL remote services. Furthermore, it overcomes the limits of the GMQL declarative syntax, by guaranteeing a procedural approach in dealing with omics data within the R/Bioconductor environment. But mostly, it provides full interoperability with other packages of the R/Bioconductor framework and extensibility over the most used genomic data structures and processing functions. Conclusions RGMQL is able to combine the query expressiveness and computational efficiency of GMQL with a complete processing flow in the R environment, being a fully integrated extension of the R/Bioconductor framework. Here we provide three fully reproducible example use cases of biological relevance that are particularly explanatory of its flexibility of use and interoperability with other R/Bioconductor packages. They show how RGMQL can easily scale up from local to parallel and cloud computing while it combines and analyzes heterogeneous omics data from local or remote datasets, both public and private, in a completely transparent way to the user.

Funder

h2020 european research council

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3