Joint pre-processing framework for two-dimensional gel electrophoresis images based on nonlinear filtering, background correction and normalization techniques

Author:

Goez Manuel Mauricio,Torres-Madronero Maria C.ORCID,Rothlisberger Sarah,Delgado-Trejos Edilson

Abstract

Abstract Background Two-dimensional gel electrophoresis (2-DGE) is a commonly used tool for proteomic analysis. This gel-based technique separates proteins in a sample according to their isoelectric point and molecular weight. 2-DGE images often present anomalies due to the acquisition process, such as: diffuse and overlapping spots, and background noise. This study proposes a joint pre-processing framework that combines the capabilities of nonlinear filtering, background correction and image normalization techniques for pre-processing 2-DGE images. Among the most important, joint nonlinear diffusion filtering, adaptive piecewise histogram equalization and multilevel thresholding were evaluated using both synthetic data and real 2-DGE images. Results An improvement of up to 46% in spot detection efficiency was achieved for synthetic data using the proposed framework compared to implementing a single technique of either normalization, background correction or filtering. Additionally, the proposed framework increased the detection of low abundance spots by 20% for synthetic data compared to a normalization technique, and increased the background estimation by 67% compared to a background correction technique. In terms of real data, the joint pre-processing framework reduced the false positives up to 93%. Conclusions The proposed joint pre-processing framework outperforms results achieved with a single approach. The best structure was obtained with the ordered combination of adaptive piecewise histogram equalization for image normalization, geometric nonlinear diffusion (GNDF) for filtering, and multilevel thresholding for background correction.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3