DeltaMSI: artificial intelligence-based modeling of microsatellite instability scoring on next-generation sequencing data

Author:

Swaerts Koen,Dedeurwaerdere Franceska,De Smet Dieter,De Jaeger Peter,Martens Geert A.ORCID

Abstract

AbstractBackgroundDNA mismatch repair deficiency (dMMR) testing is crucial for detection of microsatellite unstable (MSI) tumors. MSI is detected by aberrant indel length distributions of microsatellite markers, either by visual inspection of PCR-fragment length profiles or by automated bioinformatic scoring on next-generation sequencing (NGS) data. The former is time-consuming and low-throughput while the latter typically relies on simplified binary scoring of a single parameter of the indel distribution. The purpose of this study was to use machine learning to process the full complexity of indel distributions and integrate it into a robust script for screening of dMMR on small gene panel-based NGS data of clinical tumor samples without paired normal tissue.MethodsScikit-learn was used to train 7 models on normalized read depth data of 36 microsatellite loci in a cohort of 133 MMR proficient (pMMR) and 46 dMMR tumor samples, taking loss of MLH1/MSH2/PMS2/MSH6 protein expression as reference method. After selection of the optimal model and microsatellite panel the two top-performing models per locus (logistic regression and support vector machine) were integrated into a novel script (DeltaMSI) for combined prediction of MSI status on 28 marker loci at sample level. Diagnostic performance of DeltaMSI was compared to that of mSINGS, a widely used script for MSI detection on unpaired tumor samples. The robustness of DeltaMSI was evaluated on 1072 unselected, consecutive solid tumor samples in a real-world setting sequenced using capture chemistry, and 116 solid tumor samples sequenced by amplicon chemistry. Likelihood ratios were used to select result intervals with clinical validity.ResultsDeltaMSI achieved higher robustness at equal diagnostic power (AUC = 0.950; 95% CI 0.910–0.975) as compared to mSINGS (AUC = 0.876; 95% CI 0.823–0.918). Its sensitivity of 90% at 100% specificity indicated its clinical potential for high-throughput MSI screening in all tumor types.Clinical Trial Number/IRBB1172020000040, Ethical Committee, AZ Delta General Hospital.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3