Abstract
Abstract
Background
As regulators of gene expression, microRNAs (miRNAs) are increasingly recognized as critical biomarkers of human diseases. Till now, a series of computational methods have been proposed to predict new miRNA-disease associations based on similarity measurements. Different categories of features in miRNAs are applied in these methods for miRNA-miRNA similarity calculation. Benchmarking tests on these miRNA similarity measures are warranted to assess their effectiveness and robustness.
Results
In this study, 5 categories of features, i.e. miRNA sequences, miRNA expression profiles in cell-lines, miRNA expression profiles in tissues, gene ontology (GO) annotations of miRNA target genes and Medical Subject Heading (MeSH) terms of miRNA-associated diseases, are collected and similarity values between miRNAs are quantified based on these feature spaces, respectively. We systematically compare the 5 similarities from multi-statistical views.
Furthermore, we adopt a rule-based inference method to test their performance on miRNA-disease association predictions with the similarity measurements. Comprehensive comparison is made based on leave-one-out cross-validations and a case study. Experimental results demonstrate that the similarity measurement using MeSH terms performs best among the 5 measurements. It should be noted that the other 4 measurements can also achieve reliable prediction performance. The best-performed similarity measurement is used for new miRNA-disease association predictions and the inferred results are released for further biomedical screening.
Conclusions
Our study suggests that all the 5 features, even though some are restricted by data availability, are useful information for inferring novel miRNA-disease associations. However, biased prediction results might be produced in GO- and MeSH-based similarity measurements due to incomplete feature spaces. Similarity fusion may help produce more reliable prediction results. We expect that future studies will provide more detailed information into the 5 feature spaces and widen our understanding about disease pathogenesis.
Funder
the National Natural Science Foundation of China
the Natural Science Foundation of Jiangxi, China
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献