Transformer-based tool recommendation system in Galaxy

Author:

Kumar Anup,Grüning Björn,Backofen Rolf

Abstract

Abstract Background Galaxy is a web-based open-source platform for scientific analyses. Researchers use thousands of high-quality tools and workflows for their respective analyses in Galaxy. Tool recommender system predicts a collection of tools that can be used to extend an analysis. In this work, a tool recommender system is developed by training a transformer on workflows available on Galaxy Europe and its performance is compared to other neural networks such as recurrent, convolutional and dense neural networks. Results The transformer neural network achieves two times faster convergence, has significantly lower model usage (model reconstruction and prediction) time and shows a better generalisation that goes beyond training workflows than the older tool recommender system created using RNN in Galaxy. In addition, the transformer also outperforms CNN and DNN on several key indicators. It achieves a faster convergence time, lower model usage time, and higher quality tool recommendations than CNN. Compared to DNN, it converges faster to a higher precision@k metric (approximately 0.98 by transformer compared to approximately 0.9 by DNN) and shows higher quality tool recommendations. Conclusion Our work shows a novel usage of transformers to recommend tools for extending scientific workflows. A more robust tool recommendation model, created using a transformer, having significantly lower usage time than RNN and CNN, higher precision@k than DNN, and higher quality tool recommendations than all three neural networks, will benefit researchers in creating scientifically significant workflows and exploratory data analysis in Galaxy. Additionally, the ability to train faster than all three neural networks imparts more scalability for training on larger datasets consisting of millions of tool sequences. Open-source scripts to create the recommendation model are available under MIT licence at https://github.com/anuprulez/galaxy_tool_recommendation_transformers

Funder

German Federal Ministry of Education and Research

German Research Foundation (DFG) under Germany’s Excellence Strategy

Albert-Ludwigs-Universität Freiburg im Breisgau

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3