SAlign–a structure aware method for global PPI network alignment

Author:

Ayub Umair,Haider Imran,Naveed HammadORCID

Abstract

Abstract Background High throughput experiments have generated a significantly large amount of protein interaction data, which is being used to study protein networks. Studying complete protein networks can reveal more insight about healthy/disease states than studying proteins in isolation. Similarly, a comparative study of protein–protein interaction (PPI) networks of different species reveals important insights which may help in disease analysis and drug design. The study of PPI network alignment can also helps in understanding the different biological systems of different species. It can also be used in transfer of knowledge across different species. Different aligners have been introduced in the last decade but developing an accurate and scalable global alignment algorithm that can ensures the biological significance alignment is still challenging. Results This paper presents a novel global pairwise network alignment algorithm, SAlign, which uses topological and biological information in the alignment process. The proposed algorithm incorporates sequence and structural information for computing biological scores, whereas previous algorithms only use sequence information. The alignment based on the proposed technique shows that the combined effect of structure and sequence results in significantly better pairwise alignments. We have compared SAlign with state-of-art algorithms on the basis of semantic similarity of alignment and the number of aligned nodes on multiple PPI network pairs. The results of SAlign on the network pairs which have high percentage of proteins with available structure are 3–63% semantically better than all existing techniques. Furthermore, it also aligns 5–14% more nodes of these network pairs as compared to existing aligners. The results of SAlign on other PPI network pairs are comparable or better than all existing techniques. We also introduce $$\hbox {SAlign}^{\mathrm{mc}}$$ SAlign mc , a Monte Carlo based alignment algorithm, that produces multiple network alignments with similar semantic similarity. This helps the user to pick biologically meaningful alignments. Conclusion The proposed algorithm has the ability to find the alignments that are more biologically significant/relevant as compared to the alignments of existing aligners. Furthermore, the proposed method is able to generate alternate alignments that help in studying different genes/proteins of the specie.

Funder

Higher Education Commision, Pakistan

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference37 articles.

1. Hashemifar S, Xu J. Hubalign: an accurate and efficient method for global alignment of protein–protein interaction networks. Bioinformatics. 2014;30(17):i438–44.

2. Liu M, Ding H. Protein mover’s distance: a geometric framework for solving global alignment of PPI networks. Berlin: Springer; 2017. p. 56–69.

3. Yang L, Zhao X, Tang X. Predicting disease-related proteins based on clique backbone in Protein–Protein interaction network. Int. J Biol Sci. 2014;10(7):677.

4. Breda A, Valadares NF, de Souza ON, Garratt RC. Protein structure, modelling and applications. Bioinformatics in tropical disease research: a practical and case-study approach [Internet]. 2007.

5. Meng L, Striegel A, Milenković T. Local versus global biological network alignment. Bioinformatics. 2016;32(20):3155–64.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3