AFITbin: a metagenomic contig binning method using aggregate l-mer frequency based on initial and terminal nucleotides

Author:

Darabi Amin,Sobhani Sayeh,Aghdam Rosa,Eslahchi Changiz

Abstract

Abstract Background Using next-generation sequencing technologies, scientists can sequence complex microbial communities directly from the environment. Significant insights into the structure, diversity, and ecology of microbial communities have resulted from the study of metagenomics. The assembly of reads into longer contigs, which are then binned into groups of contigs that correspond to different species in the metagenomic sample, is a crucial step in the analysis of metagenomics. It is necessary to organize these contigs into operational taxonomic units (OTUs) for further taxonomic profiling and functional analysis. For binning, which is synonymous with the clustering of OTUs, the tetra-nucleotide frequency (TNF) is typically utilized as a compositional feature for each OTU. Results In this paper, we present AFIT, a new l-mer statistic vector for each contig, and AFITBin, a novel method for metagenomic binning based on AFIT and a matrix factorization method. To evaluate the performance of the AFIT vector, the t-SNE algorithm is used to compare species clustering based on AFIT and TNF information. In addition, the efficacy of AFITBin is demonstrated on both simulated and real datasets in comparison to state-of-the-art binning methods such as MetaBAT 2, MaxBin 2.0, CONCOT, MetaCon, SolidBin, BusyBee Web, and MetaBinner. To further analyze the performance of the purposed AFIT vector, we compare the barcodes of the AFIT vector and the TNF vector. Conclusion The results demonstrate that AFITBin shows superior performance in taxonomic identification compared to existing methods, leveraging the AFIT vector for improved results in metagenomic binning. This approach holds promise for advancing the analysis of metagenomic data, providing more reliable insights into microbial community composition and function. Availability A python package is available at: https://github.com/SayehSobhani/AFITBin.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3