LPI-HyADBS: a hybrid framework for lncRNA-protein interaction prediction integrating feature selection and classification

Author:

Zhou Liqian,Duan Qi,Tian Xiongfei,Xu He,Tang Jianxin,Peng Lihong

Abstract

Abstract Background Long noncoding RNAs (lncRNAs) have dense linkages with a plethora of important cellular activities. lncRNAs exert functions by linking with corresponding RNA-binding proteins. Since experimental techniques to detect lncRNA-protein interactions (LPIs) are laborious and time-consuming, a few computational methods have been reported for LPI prediction. However, computation-based LPI identification methods have the following limitations: (1) Most methods were evaluated on a single dataset, and researchers may thus fail to measure their generalization ability. (2) The majority of methods were validated under cross validation on lncRNA-protein pairs, did not investigate the performance under other cross validations, especially for cross validation on independent lncRNAs and independent proteins. (3) lncRNAs and proteins have abundant biological information, how to select informative features need to further investigate. Results Under a hybrid framework (LPI-HyADBS) integrating feature selection based on AdaBoost, and classification models including deep neural network (DNN), extreme gradient Boost (XGBoost), and SVM with a penalty Coefficient of misclassification (C-SVM), this work focuses on finding new LPIs. First, five datasets are arranged. Each dataset contains lncRNA sequences, protein sequences, and an LPI network. Second, biological features of lncRNAs and proteins are acquired based on Pyfeat. Third, the obtained features of lncRNAs and proteins are selected based on AdaBoost and concatenated to depict each LPI sample. Fourth, DNN, XGBoost, and C-SVM are used to classify lncRNA-protein pairs based on the concatenated features. Finally, a hybrid framework is developed to integrate the classification results from the above three classifiers. LPI-HyADBS is compared to six classical LPI prediction approaches (LPI-SKF, LPI-NRLMF, Capsule-LPI, LPI-CNNCP, LPLNP, and LPBNI) on five datasets under 5-fold cross validations on lncRNAs, proteins, lncRNA-protein pairs, and independent lncRNAs and independent proteins. The results show LPI-HyADBS has the best LPI prediction performance under four different cross validations. In particular, LPI-HyADBS obtains better classification ability than other six approaches under the constructed independent dataset. Case analyses suggest that there is relevance between ZNF667-AS1 and Q15717. Conclusions Integrating feature selection approach based on AdaBoost, three classification techniques including DNN, XGBoost, and C-SVM, this work develops a hybrid framework to identify new linkages between lncRNAs and proteins.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3