Optimizing diabetes classification with a machine learning-based framework

Author:

Feng Xin,Cai Yihuai,Xin Ruihao

Abstract

Abstract Background Diabetes is a metabolic disorder usually caused by insufficient secretion of insulin from the pancreas or insensitivity of cells to insulin, resulting in long-term elevated blood sugar levels in patients. Patients usually present with frequent urination, thirst, and hunger. If left untreated, it can lead to various complications that can affect essential organs and even endanger life. Therefore, developing an intelligent diagnosis framework for diabetes is necessary. Result This paper proposes a machine learning-based diabetes classification framework machine learning optimized GAN. The framework encompasses several methodological approaches to address the diverse challenges encountered during the analysis. These approaches encompass the implementation of the mean and median joint filling method for handling missing values, the application of the cap method for outlier processing, and the utilization of SMOTEENN to mitigate sample imbalance. Additionally, the framework incorporates the employment of the proposed Diabetes Classification Model based on Generative Adversarial Network and employs logistic regression for detailed feature analysis. The effectiveness of the framework is evaluated using both the PIMA dataset and the diabetes dataset obtained from the GEO database. The experimental findings showcase our model achieved exceptional results, including a binary classification accuracy of 96.27%, tertiary classification accuracy of 99.31%, precision and f1 score of 0.9698, recall of 0.9698, and an AUC of 0.9702. Conclusion The experimental results show that the framework proposed in this paper can accurately classify diabetes and provide new ideas for intelligent diagnosis of diabetes.

Funder

the Natural Science Foundation of Jilin Province

the Science and Technology Project of the Education Department of Jilin Province

the National Natural Science Foundation of China Joint Fund Project

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3