Author:
Feng Xin,Cai Yihuai,Xin Ruihao
Abstract
Abstract
Background
Diabetes is a metabolic disorder usually caused by insufficient secretion of insulin from the pancreas or insensitivity of cells to insulin, resulting in long-term elevated blood sugar levels in patients. Patients usually present with frequent urination, thirst, and hunger. If left untreated, it can lead to various complications that can affect essential organs and even endanger life. Therefore, developing an intelligent diagnosis framework for diabetes is necessary.
Result
This paper proposes a machine learning-based diabetes classification framework machine learning optimized GAN. The framework encompasses several methodological approaches to address the diverse challenges encountered during the analysis. These approaches encompass the implementation of the mean and median joint filling method for handling missing values, the application of the cap method for outlier processing, and the utilization of SMOTEENN to mitigate sample imbalance. Additionally, the framework incorporates the employment of the proposed Diabetes Classification Model based on Generative Adversarial Network and employs logistic regression for detailed feature analysis. The effectiveness of the framework is evaluated using both the PIMA dataset and the diabetes dataset obtained from the GEO database. The experimental findings showcase our model achieved exceptional results, including a binary classification accuracy of 96.27%, tertiary classification accuracy of 99.31%, precision and f1 score of 0.9698, recall of 0.9698, and an AUC of 0.9702.
Conclusion
The experimental results show that the framework proposed in this paper can accurately classify diabetes and provide new ideas for intelligent diagnosis of diabetes.
Funder
the Natural Science Foundation of Jilin Province
the Science and Technology Project of the Education Department of Jilin Province
the National Natural Science Foundation of China Joint Fund Project
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献