disperseNN2: a neural network for estimating dispersal distance from georeferenced polymorphism data

Author:

Smith Chris C. R.,Kern Andrew D.

Abstract

AbstractSpatial genetic variation is shaped in part by an organism’s dispersal ability. We present a deep learning tool, , for estimating the mean per-generation dispersal distance from georeferenced polymorphism data. Our neural network performs feature extraction on pairs of genotypes, and uses the geographic information that comes with each sample. These attributes led to outperform a state-of-the-art deep learning method that does not use explicit spatial information: the mean relative absolute error was reduced by 33% and 48% using sample sizes of 10 and 100 individuals, respectively. is particularly useful for non-model organisms or systems with sparse genomic resources, as it uses unphased, single nucleotide polymorphisms as its input. The software is open source and available from https://github.com/kr-colab/disperseNN2, with documentation located at https://dispersenn2.readthedocs.io/en/latest/.

Funder

National Institutes of Health,United States

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3