Identifying health related occupations of Twitter users through word embedding and deep neural networks

Author:

Zainab Kazi,Srivastava GautamORCID,Mago Vijay

Abstract

AbstractBackgroundTwitter is a popular social networking site where short messages or “tweets” of users have been used extensively for research purposes. However, not much research has been done in mining the medical professions, such as detecting the occupations of users from their biographical contents. Mining such professions can be used to build efficient recommender systems for cost-effective targeted advertisements. Moreover, it is highly important to develop effective methods to identify the occupation of users since conventional classification methods rely on features developed by human intelligence. Although, the result may be favorable for the classification problem. However, it is still extremely challenging for traditional classifiers to predict the medical occupations accurately since it involves predicting multiple occupations. Hence this study emphasizes predicting the medical occupational class of users through their public biographical (“Bio”) content. We have conducted our analysis by annotating the bio content of Twitter users. In this paper, we propose a method of combining word embedding with state-of-art neural network models that include: Long Short Term Memory (LSTM), Bidirectional LSTM, Gated Recurrent Unit, Bidirectional Encoder Representations from Transformers, and A lite BERT. Moreover, we have also observed that by composing the word embedding with the neural network models there is no need to construct any particular attribute or feature. By using word embedding, the bio contents are formatted as dense vectors which are fed as input into the neural network models as a sequence of vectors.ResultPerformance metrics that include accuracy, precision, recall, and F1-score have shown a significant difference between our method of combining word embedding with neural network models than with the traditional methods. The scores have proved that our proposed approach has outperformed the traditional machine learning techniques for detecting medical occupations among users. ALBERT has performed the best among the deep learning networks with an F1 score of 0.90.ConclusionIn this study, we have presented a novel method of detecting the occupations of Twitter users engaged in the medical domain by merging word embedding with state-of-art neural networks. The outcomes of our approach have demonstrated that our method can further advance the process of analyzing corpora of social media without going through the trouble of developing computationally expensive features.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Occupational groups prediction in Turkish Twitter data by using machine learning algorithms with multinomial approach;Expert Systems with Applications;2024-10

2. Predicting Themes of Tweets on Earthquakes in Turkey & Syria for Real-Time Classification;2023 16th International Conference on Developments in eSystems Engineering (DeSE);2023-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3