Breast cancer prediction with transcriptome profiling using feature selection and machine learning methods

Author:

Taghizadeh Eskandar,Heydarheydari Sahel,Saberi Alihossein,JafarpoorNesheli Shabnam,Rezaeijo Seyed Masoud

Abstract

Abstract Background We used a hybrid machine learning systems (HMLS) strategy that includes the extensive search for the discovery of the most optimal HMLSs, including feature selection algorithms, a feature extraction algorithm, and classifiers for diagnosing breast cancer. Hence, this study aims to obtain a high-importance transcriptome profile linked with classification procedures that can facilitate the early detection of breast cancer. Methods In the present study, 762 breast cancer patients and 138 solid tissue normal subjects were included. Three groups of machine learning (ML) algorithms were employed: (i) four feature selection procedures are employed and compared to select the most valuable feature: (1) ANOVA; (2) Mutual Information; (3) Extra Trees Classifier; and (4) Logistic Regression (LGR), (ii) a feature extraction algorithm (Principal Component Analysis), iii) we utilized 13 classification algorithms accompanied with automated ML hyperparameter tuning, including (1) LGR; (2) Support Vector Machine; (3) Bagging; (4) Gaussian Naive Bayes; (5) Decision Tree; (6) Gradient Boosting Decision Tree; (7) K Nearest Neighborhood; (8) Bernoulli Naive Bayes; (9) Random Forest; (10) AdaBoost, (11) ExtraTrees; (12) Linear Discriminant Analysis; and (13) Multilayer Perceptron (MLP). For evaluating the proposed models' performance, balance accuracy and area under the curve (AUC) were used. Results Feature selection procedure LGR + MLP classifier achieved the highest prediction accuracy and AUC (balanced accuracy: 0.86, AUC = 0.94), followed by an LGR + LGR classifier (balanced accuracy: 0.84, AUC = 0.94). The results showed that achieved AUC for the LGR + LGR classifier belonged to the 20 biomarkers as follows: TMEM212, SNORD115-13, ATP1A4, FRG2, CFHR4, ZCCHC13, FLJ46361, LY6G6E, ZNF323, KRT28, KRT25, LPPR5, C10orf99, PRKACG, SULT2A1, GRIN2C, EN2, GBA2, CUX2, and SNORA66. Conclusions The best performance was achieved using the LGR feature selection procedure and MLP classifier. Results show that the 20 biomarkers had the highest score or ranking in breast cancer detection.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3