xcore: an R package for inference of gene expression regulators

Author:

Migdał Maciej,Arakawa Takahiro,Takizawa Satoshi,Furuno Masaaki,Suzuki Harukazu,Arner Erik,Winata Cecilia LannyORCID,Kaczkowski Bogumił

Abstract

AbstractBackgroundElucidating the Transcription Factors (TFs) that drive the gene expression changes in a given experiment is a common question asked by researchers. The existing methods rely on the predicted Transcription Factor Binding Site (TFBS) to model the changes in the motif activity. Such methods only work for TFs that have a motif and assume the TF binding profile is the same in all cell types.ResultsGiven the wealth of the ChIP-seq data available for a wide range of the TFs in various cell types, we propose that gene expression modeling can be done using ChIP-seq “signatures” directly, effectively skipping the motif finding and TFBS prediction steps. We presentxcore, an R package that allows TF activity modeling based on ChIP-seq signatures and the user's gene expression data. We also providexcoredataa companion data package that provides a collection of preprocessed ChIP-seq signatures. We demonstrate thatxcoreleads to biologically relevant predictions using transforming growth factor beta induced epithelial-mesenchymal transition time-courses, rinderpest infection time-courses, and embryonic stem cells differentiated to cardiomyocytes time-course profiled with Cap Analysis Gene Expression.Conclusionsxcoreprovides a simple analytical framework for gene expression modeling using linear models that can be easily incorporated into differential expression analysis pipelines. Taking advantage of public ChIP-seq databases,xcorecan identify meaningful molecular signatures and relevant ChIP-seq experiments.

Funder

Ministry of Education, Culture, Sport, Science and Technology of Japan for the RIKEN Center for Integrative Medical Sciences

RIKEN IMS Internship Program

European Regional Development Fund

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3