Challenges in proteogenomics: a comparison of analysis methods with the case study of the DREAM proteogenomics sub-challenge

Author:

Eicher Tara,Patt Andrew,Kautto Esko,Machiraju Raghu,Mathé Ewy,Zhang Yan

Abstract

Abstract Background Proteomic measurements, which closely reflect phenotypes, provide insights into gene expression regulations and mechanisms underlying altered phenotypes. Further, integration of data on proteome and transcriptome levels can validate gene signatures associated with a phenotype. However, proteomic data is not as abundant as genomic data, and it is thus beneficial to use genomic features to predict protein abundances when matching proteomic samples or measurements within samples are lacking. Results We evaluate and compare four data-driven models for prediction of proteomic data from mRNA measured in breast and ovarian cancers using the 2017 DREAM Proteogenomics Challenge data. Our results show that Bayesian network, random forests, LASSO, and fuzzy logic approaches can predict protein abundance levels with median ground truth-predicted correlation values between 0.2 and 0.5. However, the most accurately predicted proteins differ considerably between approaches. Conclusions In addition to benchmarking aforementioned machine learning approaches for predicting protein levels from transcript levels, we discuss challenges and potential solutions in state-of-the-art proteogenomic analyses.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference30 articles.

1. Boellner S, Becker K-F. Reverse phase protein arrays-quantitative assessment of multiple biomarkers in biopsies for clinical use. Microarrays (Basel, Switzerland). 2015;4:98–114.

2. Schubert OT, et al. Quantitative proteomics: challenges and opportunities in basic and applied research. Nat Protoc. 2017;12:1289–94.

3. Nesvizhskii AI. Proteogenomics: concepts, applications and computational strategies. Nat Methods. 2014;11:1114–25.

4. Mehdi AM, et al. Predicting the dynamics of protein abundance. Mol Cell Proteomics. 2014;13:1330–40.

5. Kendrick, N. A gene’s mRNA level does not usually predict its protein level. Available from: https://kendricklabs.com/wp-content/uploads/2016/08/WP1_mRNAvsProtein_KendrickLabs.pdf

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3