Image-centric compression of protein structures improves space savings

Author:

Staniscia Luke,Yu Yun William

Abstract

Abstract Background Because of the rapid generation of data, the study of compression algorithms to reduce storage and transmission costs is important to bioinformaticians. Much of the focus has been on sequence data, including both genomes and protein amino acid sequences stored in FASTA files. Current standard practice is to use an ordinary lossless compressor such as gzip on a sequential list of atomic coordinates, but this approach expends bits on saving an arbitrary ordering of atoms, and it also prevents reordering the atoms for compressibility. The standard MMTF and BCIF file formats extend this approach with custom encoding of the coordinates. However, the brand new Foldcomp tool introduces a new paradigm of compressing local angles, to great effect. In this article, we explore a different paradigm, showing for the first time that image-based compression using global angles can also significantly improve compression ratios. To this end, we implement a prototype compressor ‘PIC’, specialized for point clouds of atom coordinates contained in PDB and mmCIF files. PIC maps the 3D data to a 2D 8-bit greyscale image and leverages the well developed PNG image compressor to minimize the size of the resulting image, forming the compressed file. Results PIC outperforms gzip in terms of compression ratio on proteins over 20,000 atoms in size, with a savings over gzip of up to 37.4% on the proteins compressed. In addition, PIC’s compression ratio increases with protein size. Conclusion Image-centric compression as demonstrated by our prototype PIC provides a potential means of constructing 3D structure-aware protein compression software, though future work would be necessary to make this practical.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference28 articles.

1. Ramachandran G. Protein structure and crystallography. Science. 1963;141(3577):288–91.

2. Ilari A, Savino C. Protein structure determination by X-ray crystallography. Bioinformatics. 2008;452:63–87.

3. Rose PW, Prlić A, Altunkaya A, Bi C, Bradley AR, Christie CH, Costanzo LD, Duarte JM, Dutta S, Feng Z, et al. The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 2016;45(D1):D271–81.

4. Berman HM, Kleywegt GJ, Nakamura H, Markley JL. The protein data bank at 40: reflecting on the past to prepare for the future. Structure. 2012;20(3):391–6.

5. Pearson WR. Using the FASTA program to search protein and DNA sequence databases. In: Computer analysis of sequence data. Springer; 1994. p. 307–331.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3