Author:
Wu Xiujin,Zeng Wenhua,Lin Fan,Zhou Xiuze
Abstract
Abstract
Background
Experimental verification of a drug discovery process is expensive and time-consuming. Therefore, recently, the demand to more efficiently and effectively identify drug–target interactions (DTIs) has intensified.
Results
We treat the prediction of DTIs as a ranking problem and propose a neural network architecture, NeuRank, to address it. Also, we assume that similar drug compounds are likely to interact with similar target proteins. Thus, in our model, we add drug and target similarities, which are very effective at improving the prediction of DTIs. Then, we develop NeuRank from a point-wise to a pair-wise, and further to list-wise model.
Conclusion
Finally, results from extensive experiments on five public data sets (DrugBank, Enzymes, Ion Channels, G-Protein-Coupled Receptors, and Nuclear Receptors) show that, in identifying DTIs, our models achieve better performance than other state-of-the-art methods.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献