Author:
Kim Juhyeon,Cheon Saeyeon,Ahn Insung
Abstract
AbstractThe rapid global spread and dissemination of SARS-CoV-2 has provided the virus with numerous opportunities to develop several variants. Thus, it is critical to determine the degree of the variations and in which part of the virus those variations occurred. Therefore, in this study, methods that could be used to vectorize the sequence data, perform clustering analysis, and visualize the results were proposed using machine learning methods. To conduct this study, a total of 224,073 cases of SARS-CoV-2 sequence data were collected through NCBI and GISAID, and the data were visualized using dimensionality reduction and clustering analysis models such as T-SNE and DBSCAN. The SARS-CoV-2 virus, which was first detected, was distinguished from different variations, including Omicron and Delta, in the cluster results. Furthermore, it was possible to examine which codon changes in the spike protein caused the variants to be distinguished using feature importance extraction models such as Random Forest or Shapely Value. The proposed method has the advantage of being able to analyse and visualize a large amount of data at once compared to the existing tree-based sequence data analysis. The proposed method was able to identify and visualize significant changes between the SARS-CoV-2 virus, which was first detected in Wuhan, China, in December 2019, and the newly formed mutant virus group. As a result of clustering analysis using sequence data, it was possible to confirm the formation of clusters among various variants in a two-dimensional graph, and by extracting the importance of variables, it was possible to confirm which codon changes played a major role in distinguishing variants. Furthermore, since the proposed method can handle a variety of data sequences, it can be used for all kinds of diseases, including influenza and SARS-CoV-2. Therefore, the proposed method has the potential to become widely used for the effective analysis of disease variations.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference51 articles.
1. World Health Organization. Clinical management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected: interim guidance. https://apps.who.int/iris/handle/10665/330893 (2020).
2. Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579:265–9. https://doi.org/10.1038/s41586-020-2008-3.
3. Wang R, Hozumi Y, Yin C, Wei G-W. Decoding SARS-CoV-2 transmission and evolution and ramifications for COVID-19 diagnosis, vaccine, and medicine. J Chem Inf Model. 2020;60:5853–65.
4. Korber B, et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020;182:812–27.
5. Zhang L, et al. SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat Commun. 2020;11:6013.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献