Predicting disease genes based on multi-head attention fusion

Author:

Zhang Linlin,Lu Dianrong,Bi Xuehua,Zhao Kai,Yu Guanglei,Quan Na

Abstract

Abstract Background The identification of disease-related genes is of great significance for the diagnosis and treatment of human disease. Most studies have focused on developing efficient and accurate computational methods to predict disease-causing genes. Due to the sparsity and complexity of biomedical data, it is still a challenge to develop an effective multi-feature fusion model to identify disease genes. Results This paper proposes an approach to predict the pathogenic gene based on multi-head attention fusion (MHAGP). Firstly, the heterogeneous biological information networks of disease genes are constructed by integrating multiple biomedical knowledge databases. Secondly, two graph representation learning algorithms are used to capture the feature vectors of gene-disease pairs from the network, and the features are fused by introducing multi-head attention. Finally, multi-layer perceptron model is used to predict the gene-disease association. Conclusions The MHAGP model outperforms all of other methods in comparative experiments. Case studies also show that MHAGP is able to predict genes potentially associated with diseases. In the future, more biological entity association data, such as gene-drug, disease phenotype-gene ontology and so on, can be added to expand the information in heterogeneous biological networks and achieve more accurate predictions. In addition, MHAGP with strong expansibility can be used for potential tasks such as gene-drug association and drug-disease association prediction.

Funder

Natural Science Foundation of China

Key R&D Program of Xinjiang Uygur Autonomous Region

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3