NanoBERTa-ASP: predicting nanobody paratope based on a pretrained RoBERTa model

Author:

Li Shangru,Meng Xiangpeng,Li Rui,Huang Bingding,Wang Xin

Abstract

Abstract Background Nanobodies, also known as VHH or single-domain antibodies, are unique antibody fragments derived solely from heavy chains. They offer advantages of small molecules and conventional antibodies, making them promising therapeutics. The paratope is the specific region on an antibody that binds to an antigen. Paratope prediction involves the identification and characterization of the antigen-binding site on an antibody. This process is crucial for understanding the specificity and affinity of antibody-antigen interactions. Various computational methods and experimental approaches have been developed to predict and analyze paratopes, contributing to advancements in antibody engineering, drug development, and immunotherapy. However, existing predictive models trained on traditional antibodies may not be suitable for nanobodies. Additionally, the limited availability of nanobody datasets poses challenges in constructing accurate models. Methods To address these challenges, we have developed a novel nanobody prediction model, named NanoBERTa-ASP (Antibody Specificity Prediction), which is specifically designed for predicting nanobody-antigen binding sites. The model adopts a training strategy more suitable for nanobodies, based on an advanced natural language processing (NLP) model called BERT (Bidirectional Encoder Representations from Transformers). To be more specific, the model utilizes a masked language modeling approach named RoBERTa (Robustly Optimized BERT Pretraining Approach) to learn the contextual information of the nanobody sequence and predict its binding site. Results NanoBERTa-ASP achieved exceptional performance in predicting nanobody binding sites, outperforming existing methods, indicating its proficiency in capturing sequence information specific to nanobodies and accurately identifying their binding sites. Furthermore, NanoBERTa-ASP provides insights into the interaction mechanisms between nanobodies and antigens, contributing to a better understanding of nanobodies and facilitating the design and development of nanobodies with therapeutic potential. Conclusion NanoBERTa-ASP represents a significant advancement in nanobody paratope prediction. Its superior performance highlights the potential of deep learning approaches in nanobody research. By leveraging the increasing volume of nanobody data, NanoBERTa-ASP can further refine its predictions, enhance its performance, and contribute to the development of novel nanobody-based therapeutics. Github repository: https://github.com/WangLabforComputationalBiology/NanoBERTa-ASP

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3