Abstract
Abstract
Background
Linkage and linkage disequilibrium (LD) between genome regions cause dependencies among genomic markers. Due to family stratification in populations with non-random mating in livestock or crop, the standard measures of population LD such as $$r^2$$
r
2
may be biased. Grouping of markers according to their interdependence needs to account for the actual population structure in order to allow proper inference in genome-based evaluations.
Results
Given a matrix reflecting the strength of association between markers, groups are built successively using a greedy algorithm; largest groups are built at first. As an option, a representative marker is selected for each group. We provide an implementation of the grouping approach as a new function to the R package . This package enables the calculation of the theoretical covariance between biallelic markers for half- or full-sib families and the derivation of representative markers. In case studies, we have shown that the number of groups comprising dependent markers was smaller and representative SNPs were spread more uniformly over the investigated chromosome region when the family stratification was respected compared to a population-LD approach. In a simulation study, we observed that sensitivity and specificity of a genome-based association study improved if selection of representative markers took family structure into account.
Conclusions
Chromosome segments which frequently recombine in the underlying population can be identified from the matrix of pairwise dependence between markers. Representative markers can be exploited, for instance, for dimension reduction prior to a genome-based association study or the grouping structure itself can be employed in a grouped penalization approach.
Funder
Deutsche Forschungsgemeinschaft
Leibniz-Institut für Nutztierbiologie
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献