Identifying stress responsive genes using overlapping communities in co-expression networks

Author:

Riccio-Rengifo CamilaORCID,Finke Jorge,Rocha Camilo

Abstract

Abstract Background This paper proposes a workflow to identify genes that respond to specific treatments in plants. The workflow takes as input the RNA sequencing read counts and phenotypical data of different genotypes, measured under control and treatment conditions. It outputs a reduced group of genes marked as relevant for treatment response. Technically, the proposed approach is both a generalization and an extension of WGCNA. It aims to identify specific modules of overlapping communities underlying the co-expression network of genes. Module detection is achieved by using Hierarchical Link Clustering. The overlapping nature of the systems’ regulatory domains that generate co-expression can be identified by such modules. LASSO regression is employed to analyze phenotypic responses of modules to treatment. Results The workflow is applied to rice (Oryza sativa), a major food source known to be highly sensitive to salt stress. The workflow identifies 19 rice genes that seem relevant in the response to salt stress. They are distributed across 6 modules: 3 modules, each grouping together 3 genes, are associated to shoot K content; 2 modules of 3 genes are associated to shoot biomass; and 1 module of 4 genes is associated to root biomass. These genes represent target genes for the improvement of salinity tolerance in rice. Conclusions A more effective framework to reduce the search-space for target genes that respond to a specific treatment is introduced. It facilitates experimental validation by restraining efforts to a smaller subset of genes of high potential relevance.

Funder

World Bank Group

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3