Gbdmr: identifying differentially methylated CpG regions in the human genome via generalized beta regressions

Author:

Wu Chengzhou,Mou Xichen,Zhang Hongmei

Abstract

Abstract Background DNA methylation is a biochemical process in which a methyl group is added to the cytosine-phosphate-guanine (CpG) site on DNA molecules without altering the DNA sequence. Multiple CpG sites in a certain genome region can be differentially methylated across phenotypes. Identifying these differentially methylated CpG regions (DMRs) associated with the phenotypes contributes to disease prediction and precision medicine development. Results We propose a novel DMR detection algorithm, gbdmr. In contrast to existing methods under a linear regression framework, gbdmr assumes that DNA methylation levels follow a generalized beta distribution. We compare gbdmr to alternative approaches via simulations and real data analyses, including dmrff, a new DMR detection approach that shows promising performance among competitors, and the traditional EWAS that focuses on single CpG sites. Our simulations demonstrate that gbdmr is superior to the other two when the correlation between neighboring CpG sites is strong, while dmrff shows a higher power when the correlation is weak. We provide an explanation of these phenomena from a theoretical perspective. We further applied the three methods to multiple real DNA methylation datasets. One is from a birth cohort study undertaken on the Isle of Wight, United Kingdom, and the other two are from the Gene Expression Omnibus database repository. Overall, gbdmr identifies more DMR CpGs linked to phenotypes than dmrff, and the simulated results support the findings. Conclusions Gbdmr is an innovative method for detecting DMRs based on generalized beta regression. It demonstrated notable advantages over dmrff and traditional EWAS, particularly when adjacent CpGs exhibited moderate to strong correlations. Our real data analyses and simulated findings highlight the reliability of gbdmr as a robust DMR detection tool. The gbdmr approach is accessible and implemented by R on GitHub: https://github.com/chengzhouwu/gbdmr.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3