Abstract
Abstract
Background
Drug-target interaction (DTI) prediction plays an important role in drug discovery and repositioning. However, most of the computational methods used for identifying relevant DTIs do not consider the invariance of the nearest neighbour relationships between drugs or targets. In other words, they do not take into account the invariance of the topological relationships between nodes during representation learning. It may limit the performance of the DTI prediction methods.
Results
Here, we propose a novel graph convolutional autoencoder-based model, named SDGAE, to predict DTIs. As the graph convolutional network cannot handle isolated nodes in a network, a pre-processing step was applied to reduce the number of isolated nodes in the heterogeneous network and facilitate effective exploitation of the graph convolutional network. By maintaining the graph structure during representation learning, the nearest neighbour relationships between nodes in the embedding space remained as close as possible to the original space.
Conclusions
Overall, we demonstrated that SDGAE can automatically learn more informative and robust feature vectors of drugs and targets, thus exhibiting significantly improved predictive accuracy for DTIs.
Funder
National Key Technologies R &D Program
Natural Science Foundation of Anhui Province
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献