Assistant diagnosis with Chinese electronic medical records based on CNN and BiLSTM with phrase-level and word-level attentions

Author:

Wang Tong,Xuan Ping,Liu Zonglin,Zhang Tiangang

Abstract

Abstract Background Inferring diseases related to the patient’s electronic medical records (EMRs) is of great significance for assisting doctor diagnosis. Several recent prediction methods have shown that deep learning-based methods can learn the deep and complex information contained in EMRs. However, they do not consider the discriminative contributions of different phrases and words. Moreover, local information and context information of EMRs should be deeply integrated. Results A new method based on the fusion of a convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) with attention mechanisms is proposed for predicting a disease related to a given EMR, and it is referred to as FCNBLA. FCNBLA deeply integrates local information, context information of the word sequence and more informative phrases and words. A novel framework based on deep learning is developed to learn the local representation, the context representation and the combination representation. The left side of the framework is constructed based on CNN to learn the local representation of adjacent words. The right side of the framework based on BiLSTM focuses on learning the context representation of the word sequence. Not all phrases and words contribute equally to the representation of an EMR meaning. Therefore, we establish the attention mechanisms at the phrase level and word level, and the middle module of the framework learns the combination representation of the enhanced phrases and words. The macro average f-score and accuracy of FCNBLA achieved 91.29 and 92.78%, respectively. Conclusion The experimental results indicate that FCNBLA yields superior performance compared with several state-of-the-art methods. The attention mechanisms and combination representations are also confirmed to be helpful for improving FCNBLA’s prediction performance. Our method is helpful for assisting doctors in diagnosing diseases in patients.

Funder

the Natural Science Foundation of China

the Natural Science Foundation of Heilongjiang Province

the China Postdoctoral Science Foundation

the Heilongjiang Postdoctoral Scientific Research Staring Foundation

the Fundamental Research Foundation of Universities in Heilongjiang Province for Technology Innovation

the Fundamental Research Foundation of Universities in Heilongjiang Province for Youth Innovation Team

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3