Improve hot region prediction by analyzing different machine learning algorithms

Author:

Hu Jing,Zhou Longwei,Li Bo,Zhang XiaolongORCID,Chen Nansheng

Abstract

Abstract Background In the process of designing drugs and proteins, it is crucial to recognize hot regions in protein–protein interactions. Each hot region of protein–protein interaction is composed of at least three hot spots, which play an important role in binding. However, it takes time and labor force to identify hot spots through biological experiments. If predictive models based on machine learning methods can be trained, the drug design process can be effectively accelerated. Results The results show that different machine learning algorithms perform similarly, as evaluating using the F-measure. The main differences between these methods are recall and precision. Since the key attribute of hot regions is that they are packed tightly, we used the cluster algorithm to predict hot regions. By combining Gaussian Naïve Bayes and DBSCAN, the F-measure of hot region prediction can reach 0.809. Conclusions In this paper, different machine learning models such as Gaussian Naïve Bayes, SVM, Xgboost, Random Forest, and Artificial Neural Network are used to predict hot spots. The experiment results show that the combination of hot spot classification algorithm with higher recall rate and clustering algorithm with higher precision can effectively improve the accuracy of hot region prediction.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3