Abstract
Abstract
Background
In the process of designing drugs and proteins, it is crucial to recognize hot regions in protein–protein interactions. Each hot region of protein–protein interaction is composed of at least three hot spots, which play an important role in binding. However, it takes time and labor force to identify hot spots through biological experiments. If predictive models based on machine learning methods can be trained, the drug design process can be effectively accelerated.
Results
The results show that different machine learning algorithms perform similarly, as evaluating using the F-measure. The main differences between these methods are recall and precision. Since the key attribute of hot regions is that they are packed tightly, we used the cluster algorithm to predict hot regions. By combining Gaussian Naïve Bayes and DBSCAN, the F-measure of hot region prediction can reach 0.809.
Conclusions
In this paper, different machine learning models such as Gaussian Naïve Bayes, SVM, Xgboost, Random Forest, and Artificial Neural Network are used to predict hot spots. The experiment results show that the combination of hot spot classification algorithm with higher recall rate and clustering algorithm with higher precision can effectively improve the accuracy of hot region prediction.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献