Employing phylogenetic tree shape statistics to resolve the underlying host population structure

Author:

Kayondo Hassan W.ORCID,Ssekagiri Alfred,Nabakooza Grace,Bbosa Nicholas,Ssemwanga Deogratius,Kaleebu Pontiano,Mwalili Samuel,Mango John M.,Leigh Brown Andrew J.,Saenz Roberto A.,Galiwango Ronald,Kitayimbwa John M.

Abstract

Abstract Background Host population structure is a key determinant of pathogen and infectious disease transmission patterns. Pathogen phylogenetic trees are useful tools to reveal the population structure underlying an epidemic. Determining whether a population is structured or not is useful in informing the type of phylogenetic methods to be used in a given study. We employ tree statistics derived from phylogenetic trees and machine learning classification techniques to reveal an underlying population structure. Results In this paper, we simulate phylogenetic trees from both structured and non-structured host populations. We compute eight statistics for the simulated trees, which are: the number of cherries; Sackin, Colless and total cophenetic indices; ladder length; maximum depth; maximum width, and width-to-depth ratio. Based on the estimated tree statistics, we classify the simulated trees as from either a non-structured or a structured population using the decision tree (DT), K-nearest neighbor (KNN) and support vector machine (SVM). We incorporate the basic reproductive number ($$R_0$$ R 0 ) in our tree simulation procedure. Sensitivity analysis is done to investigate whether the classifiers are robust to different choice of model parameters and to size of trees. Cross-validated results for area under the curve (AUC) for receiver operating characteristic (ROC) curves yield mean values of over 0.9 for most of the classification models. Conclusions Our classification procedure distinguishes well between trees from structured and non-structured populations using the classifiers, the two-sample Kolmogorov-Smirnov, Cucconi and Podgor-Gastwirth tests and the box plots. SVM models were more robust to changes in model parameters and tree size compared to KNN and DT classifiers. Our classification procedure was applied to real -world data and the structured population was revealed with high accuracy of $$92.3\%$$ 92.3 % using SVM-polynomial classifier.

Funder

Pan African University, Institute of Basic Sciences, Technology and Innovation

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3