Avian Immunome DB: an example of a user-friendly interface for extracting genetic information

Author:

Mueller Ralf C.ORCID,Mallig Nicolai,Smith Jacqueline,Eöry Lél,Kuo Richard I.,Kraus Robert H. S.

Abstract

Abstract Background Genomic and genetic studies often require a target list of genes before conducting any hypothesis testing or experimental verification. With the ever-growing number of sequenced genomes and a variety of different annotation strategies, comes the potential for ambiguous gene symbols, making it cumbersome to capture the “correct” set of genes. In this article, we present and describe the Avian Immunome DB (Avimm) for easy gene property extraction as exemplified by avian immune genes. The avian immune system is characterised by a cascade of complex biological processes underlaid by more than 1000 different genes. It is a vital trait to study particularly in birds considering that they are a significant driver in spreading zoonotic diseases. With the completion of phase II of the B10K (“Bird 10,000 Genomes”) consortium’s whole-genome sequencing effort, we have included 363 annotated bird genomes in addition to other publicly available bird genome data which serve as a valuable foundation for Avimm. Construction and content A relational database with avian immune gene evidence from Gene Ontology, Ensembl, UniProt and the B10K consortium has been designed and set up. The foundation stone or the “seed” for the initial set of avian immune genes is based on the well-studied model organism chicken (Gallus gallus). Gene annotations, different transcript isoforms, nucleotide sequences and protein information, including amino acid sequences, are included. Ambiguous gene names (symbols) are resolved within the database and linked to their canonical gene symbol. Avimm is supplemented by a command-line interface and a web front-end to query the database. Utility and discussion The internal mapping of unique gene symbol identifiers to canonical gene symbols allows for an ambiguous gene property search. The database is organised within core and feature tables, which makes it straightforward to extend for future purposes. The database design is ready to be applied to other taxa or biological processes. Currently, the database contains 1170 distinct avian immune genes with canonical gene symbols and 612 synonyms across 363 bird species. While the command-line interface readily integrates into bioinformatics pipelines, the intuitive web front-end with download functionality offers sophisticated search functionalities and tracks the origin for each record. Avimm is publicly accessible at https://avimm.ab.mpg.de.

Funder

Ministry of Science, Research and the Arts of the State of Baden-Württemberg

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference55 articles.

1. Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, Waterston RH. DNA sequencing at 40: past, present and future. Nature. 2017;550(7676):345–53. https://doi.org/10.1038/nature24286.

2. GenBank and WGS Statistics. https://www.ncbi.nlm.nih.gov/genbank/statistics/. Accessed 13 May 2020

3. Brusic V, Zeleznikow J, Petrovsky N. Molecular immunology databases and data repositories. J Immunol Methods. 2000;238(1):17–28. https://doi.org/10.1016/S0022-1759(00)00159-9.

4. Selzer PM, Marhöfer RJ, Koch O. Biological databases. In: Selzer PM, Marhöfer RJ, Koch O, editors. Applied bioinformatics: an Introduction. Cham: Springer; 2018. p. 13–34. https://doi.org/10.1007/978-3-319-68301-0_2.

5. Cunningham F, Achuthan P, Akanni W, Allen J, Amode MR, Armean IM, Bennett R, Bhai J, Billis K, Boddu S, Cummins C, Davidson C, Dodiya KJ, Gall A, Girón CG, Gil L, Grego T, Haggerty L, Haskell E, Hourlier T, Izuogu OG, Janacek SH, Juettemann T, Kay M, Laird MR, Lavidas I, Liu Z, Loveland JE, Marugán JC, Maurel T, McMahon AC, Moore B, Morales J, Mudge JM, Nuhn M, Ogeh D, Parker A, Parton A, Patricio M, Abdul Salam AI, Schmitt BM, Schuilenburg H, Sheppard D, Sparrow H, Stapleton E, Szuba M, Taylor K, Threadgold G, Thormann A, Vullo A, Walts B, Winterbottom A, Zadissa A, Chakiachvili M, Frankish A, Hunt SE, Kostadima M, Langridge N, Martin FJ, Muffato M, Perry E, Ruffier M, Staines DM, Trevanion SJ, Aken BL, Yates AD, Zerbino DR, Flicek P. Ensembl. Nucleic Acids Res. 2019;47(D1):745–51. https://doi.org/10.1093/nar/gky1113.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3