Multi-view heterogeneous molecular network representation learning for protein–protein interaction prediction

Author:

Su Xiao-Rui,Hu Lun,You Zhu-Hong,Hu Peng-Wei,Zhao Bo-Wei

Abstract

Abstract Background Protein–protein interaction (PPI) plays an important role in regulating cells and signals. Despite the ongoing efforts of the bioassay group, continued incomplete data limits our ability to understand the molecular roots of human disease. Therefore, it is urgent to develop a computational method to predict PPIs from the perspective of molecular system. Methods In this paper, a highly efficient computational model, MTV-PPI, is proposed for PPI prediction based on a heterogeneous molecular network by learning inter-view protein sequences and intra-view interactions between molecules simultaneously. On the one hand, the inter-view feature is extracted from the protein sequence by k-mer method. On the other hand, we use a popular embedding method LINE to encode the heterogeneous molecular network to obtain the intra-view feature. Thus, the protein representation used in MTV-PPI is constructed by the aggregation of its inter-view feature and intra-view feature. Finally, random forest is integrated to predict potential PPIs. Results To prove the effectiveness of MTV-PPI, we conduct extensive experiments on a collected heterogeneous molecular network with the accuracy of 86.55%, sensitivity of 82.49%, precision of 89.79%, AUC of 0.9301 and AUPR of 0.9308. Further comparison experiments are performed with various protein representations and classifiers to indicate the effectiveness of MTV-PPI in predicting PPIs based on a complex network. Conclusion The achieved experimental results illustrate that MTV-PPI is a promising tool for PPI prediction, which may provide a new perspective for the future interactions prediction researches based on heterogeneous molecular network.

Funder

Natural Science Foundation of Xinjiang Uygur Autonomous Region

the Pioneer Hundred Talents Program of Chinese Academy of Sciences

National Natural Science Foundation of China

NSFC Excellent Young Scholars Program

the Science and Technology Innovation 2030-New Generation Artificial Intelligence Major Project

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3