M2PP: a novel computational model for predicting drug-targeted pathogenic proteins

Author:

Wang Shiming,Li Jie,Wang Yadong

Abstract

Abstract Background Detecting pathogenic proteins is the origin way to understand the mechanism and resist the invasion of diseases, making pathogenic protein prediction develop into an urgent problem to be solved. Prediction for genome-wide proteins may be not necessarily conducive to rapidly cure diseases as developing new drugs specifically for the predicted pathogenic protein always need major expenditures on time and cost. In order to facilitate disease treatment, computational method to predict pathogenic proteins which are targeted by existing drugs should be exploited. Results In this study, we proposed a novel computational model to predict drug-targeted pathogenic proteins, named as M2PP. Three types of features were presented on our constructed heterogeneous network (including target proteins, diseases and drugs), which were based on the neighborhood similarity information, drug-inferred information and path information. Then, a random forest regression model was trained to score unconfirmed target-disease pairs. Five-fold cross-validation experiment was implemented to evaluate model’s prediction performance, where M2PP achieved advantageous results compared with other state-of-the-art methods. In addition, M2PP accurately predicted high ranked pathogenic proteins for common diseases with public biomedical literature as supporting evidence, indicating its excellent ability. Conclusions M2PP is an effective and accurate model to predict drug-targeted pathogenic proteins, which could provide convenience for the future biological researches.

Funder

the National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3