On the dynamical aspects of local translation at the activated synapse

Author:

Khlebodarova Tamara M.,Kogai Vladislav V.,Likhoshvai Vitaly A.

Abstract

Abstract Background The key role in the dynamic regulation of synaptic protein turnover belongs to the Fragile X Mental Retardation Protein, which regulates the efficiency of dendritic mRNA translation in response to stimulation of metabotropic glutamate receptors at excitatory synapses of the hippocampal pyramidal cells. Its activity is regulated via positive and negative regulatory loops that function in different time ranges, which is an absolute factor for the formation of chaotic regimes that lead to disrupted proteome stability. The indicated condition may cause a number of neuropsychiatric diseases, including autism and epilepsy. The present study is devoted to a theoretical analysis of the local translation system dynamic properties and identification of parameters affecting the chaotic potential of the system. Results A mathematical model that describes the maintenance of a specific pool of active receptors on the postsynaptic membrane via two mechanisms – de novo synthesis of receptor proteins and restoration of protein function during the recycling process – has been developed. Analysis of the model revealed that an increase in the values of the parameters describing the impact of protein recycling on the maintenance of a pool of active receptors in the membrane, duration of the signal transduction via the mammalian target of rapamycin pathway, influence of receptors on the translation activation, as well as reduction of the rate of synthesis and integration of de novo synthesized proteins into the postsynaptic membrane – contribute to the reduced complexity of the local translation system dynamic state. Formation of these patterns significantly depends on the complexity and non-linearity of the mechanisms of exposure of de novo synthesized receptors to the postsynaptic membrane, the correct evaluation of which is currently problematic. Conclusions The model predicts that an increase of “receptor recycling” and reduction of the rate of synthesis and integration of de novo synthesized proteins into the postsynaptic membrane contribute to the reduced complexity of the local translation system dynamic state. Herewith, stable stationary states occur much less frequently than cyclic states. It is possible that cyclical nature of functioning of the local translation system is its “normal” dynamic state.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3