Adverse drug reaction detection via a multihop self-attention mechanism

Author:

Zhang Tongxuan,Lin HongfeiORCID,Ren Yuqi,Yang Liang,Xu Bo,Yang Zhihao,Wang Jian,Zhang Yijia

Abstract

Abstract Background The adverse reactions that are caused by drugs are potentially life-threatening problems. Comprehensive knowledge of adverse drug reactions (ADRs) can reduce their detrimental impacts on patients. Detecting ADRs through clinical trials takes a large number of experiments and a long period of time. With the growing amount of unstructured textual data, such as biomedical literature and electronic records, detecting ADRs in the available unstructured data has important implications for ADR research. Most of the neural network-based methods typically focus on the simple semantic information of sentence sequences; however, the relationship of the two entities depends on more complex semantic information. Methods In this paper, we propose multihop self-attention mechanism (MSAM) model that aims to learn the multi-aspect semantic information for the ADR detection task. first, the contextual information of the sentence is captured by using the bidirectional long short-term memory (Bi-LSTM) model. Then, via applying the multiple steps of an attention mechanism, multiple semantic representations of a sentence are generated. Each attention step obtains a different attention distribution focusing on the different segments of the sentence. Meanwhile, our model locates and enhances various keywords from the multiple representations of a sentence. Results Our model was evaluated by using two ADR corpora. It is shown that the method has a stable generalization ability. Via extensive experiments, our model achieved F-measure of 0.853, 0.799 and 0.851 for ADR detection for TwiMed-PubMed, TwiMed-Twitter, and ADE, respectively. The experimental results showed that our model significantly outperforms other compared models for ADR detection. Conclusions In this paper, we propose a modification of multihop self-attention mechanism (MSAM) model for an ADR detection task. The proposed method significantly improved the learning of the complex semantic information of sentences.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3