FEGS: a novel feature extraction model for protein sequences and its applications

Author:

Mu Zengchao,Yu Ting,Liu Xiaoping,Zheng Hongyu,Wei Leyi,Liu Juntao

Abstract

Abstract Background Feature extraction of protein sequences is widely used in various research areas related to protein analysis, such as protein similarity analysis and prediction of protein functions or interactions. Results In this study, we introduce FEGS (Feature Extraction based on Graphical and Statistical features), a novel feature extraction model of protein sequences, by developing a new technique for graphical representation of protein sequences based on the physicochemical properties of amino acids and effectively employing the statistical features of protein sequences. By fusing the graphical and statistical features, FEGS transforms a protein sequence into a 578-dimensional numerical vector. When FEGS is applied to phylogenetic analysis on five protein sequence data sets, its performance is notably better than all of the other compared methods. Conclusion The FEGS method is carefully designed, which is practically powerful for extracting features of protein sequences. The current version of FEGS is developed to be user-friendly and is expected to play a crucial role in the related studies of protein sequence analyses.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3