geneRFinder: gene finding in distinct metagenomic data complexities

Author:

Silva Raíssa,Padovani Kleber,Góes Fabiana,Alves RonnieORCID

Abstract

Abstract Background Microbes perform a fundamental economic, social, and environmental role in our society. Metagenomics makes it possible to investigate microbes in their natural environments (the complex communities) and their interactions. The way they act is usually estimated by looking at the functions they play in those environments and their responsibility is measured by their genes. The advances of next-generation sequencing technology have facilitated metagenomics research however it also creates a heavy computational burden. Large and complex biological datasets are available as never before. There are many gene predictors available that can aid the gene annotation process though they lack handling appropriately metagenomic data complexities. There is no standard metagenomic benchmark data for gene prediction. Thus, gene predictors may inflate their results by obfuscating low false discovery rates. Results We introduce geneRFinder, an ML-based gene predictor able to outperform state-of-the-art gene prediction tools across this benchmark by using only one pre-trained Random Forest model. Average prediction rates of geneRFinder differed in percentage terms by 54% and 64%, respectively, against Prodigal and FragGeneScan while handling high complexity metagenomes. The specificity rate of geneRFinder had the largest distance against FragGeneScan, 79 percentage points, and 66 more than Prodigal. According to McNemar’s test, all percentual differences between predictors performances are statistically significant for all datasets with a 99% confidence interval. Conclusions We provide geneRFinder, an approach for gene prediction in distinct metagenomic complexities, available at gitlab.com/r.lorenna/generfinder and https://osf.io/w2yd6/, and also we provide a novel, comprehensive benchmark data for gene prediction—which is based on The Critical Assessment of Metagenome Interpretation (CAMI) challenge, and contains labeled data from gene regions—available at https://sourceforge.net/p/generfinder-benchmark.

Funder

Vale

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3