SparkEC: speeding up alignment-based DNA error correction tools

Author:

Expósito Roberto R.ORCID,Martínez-Sánchez Marco,Touriño Juan

Abstract

Abstract Background In recent years, huge improvements have been made in the context of sequencing genomic data under what is called Next Generation Sequencing (NGS). However, the DNA reads generated by current NGS platforms are not free of errors, which can affect the quality of downstream analysis. Although error correction can be performed as a preprocessing step to overcome this issue, it usually requires long computational times to analyze those large datasets generated nowadays through NGS. Therefore, new software capable of scaling out on a cluster of nodes with high performance is of great importance. Results In this paper, we present SparkEC, a parallel tool capable of fixing those errors produced during the sequencing process. For this purpose, the algorithms proposed by the CloudEC tool, which is already proved to perform accurate corrections, have been analyzed and optimized to improve their performance by relying on the Apache Spark framework together with the introduction of other enhancements such as the usage of memory-efficient data structures and the avoidance of any input preprocessing. The experimental results have shown significant improvements in the computational times of SparkEC when compared to CloudEC for all the representative datasets and scenarios under evaluation, providing an average and maximum speedups of 4.9$$\times$$ × and 11.9$$\times$$ × , respectively, over its counterpart. Conclusion As error correction can take excessive computational time, SparkEC provides a scalable solution for correcting large datasets. Due to its distributed implementation, SparkEC speed can increase with respect to the number of nodes in a cluster. Furthermore, the software is freely available under GPLv3 license and is compatible with different operating systems (Linux, Windows and macOS).

Funder

Ministerio de Ciencia e Innovación

Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3